van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).
Kitzing, L., Jensen, M. K., Telsnig, T. & Lantz, E. Multifaceted drivers for onshore wind energy repowering and their implications for energy transition. Nat. Energy 5, 1012–1021 (2020).
Li, J. et al. Critical rare-earth elements mismatch global wind-power ambitions. One Earth 3, 116–125 (2020).
Rasmussen, K. D., Wenzel, H., Bangs, C., Petavratzi, E. & Liu, G. Platinum demand and potential bottlenecks in the global green transition: a dynamic material flow analysis. Environ. Sci. Technol. 53, 11541–11551 (2019).
Hao, H. et al. Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment. Nat. Commun. 10, 5398 (2019).
Cao, Z. et al. Resourcing the fairytale country with wind power: a dynamic material flow analysis. Environ. Sci. Technol. 53, 11313–11322 (2019).
International Energy Agency, (IEA). The Role of Critical Minerals in Clean Energy Transitions. https://iea.blob.core.windows.net/assets/24d5dfbb-a77a-4647-abcc-667867207f74/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf (2021).
Melton, N., Axsen, J. & Sperling, D. Moving beyond alternative fuel hype to decarbonize transportation. Nat. Energy 1, 16013 (2016).
Kittner, N., Lill, F. & Kammen, D. M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 17125 (2017).
Dunn, J., Slattery, M., Kendall, A., Ambrose, H. & Shen, S. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environ. Sci. Technol. 55, 5189–5198 (2021).
Executive Office of the President of the United States Federal Government. Addressing the Threat to the Domestic Supply Chain From Reliance on Critical Minerals From Foreign Adversaries and Supporting the Domestic Mining and Processing Industries. https://www.federalregister.gov/documents/2020/10/05/2020-22064/addressing-the-threat-to-the-domestic-supply-chain-from-reliance-on-critical-minerals-from-foreign (2020).
Ministry of Natural Resources & National Development and Reform Commission of the People’s Republic of China. National Mineral Resources Planning 2016-2020. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201705/t20170511_1196755.html (2016).
Blengini, G. A. et al. Study on the EU’s list of Critical Raw Materials (2020) Final Report. https://op.europa.eu/en/publication-detail/-/publication/c0d5292a-ee54-11ea-991b-01aa75ed71a1/language-en (2020).
The Ministry of Economy, Trade and Industry of Japan, (METI). New International Resource Strategy. https://www.meti.go.jp/english/press/2020/0330_005.html (2020).
Mudd, G. M. et al. Critical minerals in Australia: A review of opportunities and research needs. https://doi.org/10.11636/Record.2018.051 (2018).
Hao, H. et al. Securing platinum-group metals for transport low-carbon transition. One Earth 1, 117–125 (2019).
Fishman, T., Myers, R., Rios, O. & Graedel, T. E. Implications of emerging vehicle technologies on rare earth supply and demand in the United States. Resources 7, 9 (2018).
Roskill. Cobalt: Outlook to 2030. https://www.roskillinteractive.com/ (2021).
Alves Dias, P., Blagoeva, D., Pavel, C. & Arvanitidis, N. Cobalt: demand-supply balances in the transition to electric mobility. https://data.europa.eu/doi/10.2760/97710 (2018).
U.S. Geological Survey. Mineral Commodity Summaries 2020. https://doi.org/10.3133/mcs2020. (2020).
Dehaine, Q., Tijsseling, L. T., Glass, H. J., Törmänen, T. & Butcher, A. R. Geometallurgy